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Introduction

High-temperature steam electrolysis 
using heat and electricity from a 
nuclear reactor is a route to making 
affordable hydrogen.  This process 
splits water with heat and electrical 
energy using the technology of solid 
oxide fuel cells (SOFC), where:

• The cell is polarized to reverse 
the SOFC reaction

• The feed stream is 90% 
steam/10% hydrogen

• Operating between 700°C and 
900°C reduces the electrical 
energy demand

Challenges

• A much more active oxygen 
evolution electrode material 
is needed.

• The traditional SOFC has 
been optimized for 
performance at 1000°C.  The 
oxygen electrode material of 
the traditional SOFC, 
La0.8Sr0.2MnO3 (LSM), has 
limited oxygen ion and 
electronic conductivity at 
temperatures between 700°C 
and 900°C. 

Approach

We have been investigating alternative materials for improved oxygen electrode performance below 1000ºC by exploring 
materials with significant electronic and ionic conductivity at 800 to 900°C, such as:

• LaNiO3 (LN)
• La0.8Sr0.2CoO3 (LSC) 
• La0.8Sr0.2FeO3 (LSF) 
• La0.7Sr0.2FeO3 (LSF-ns) 

Experimental procedure:
• Powders of the electrode materials were synthesized using a self-combustion process
• Electrode inks were made by ball milling the powders with ethanol 
• The electrode inks were painted onto yttria-stabilized zirconia (YSZ) subtrates to make the working and reference 

electrodes  
• Counter electrodes were painted onto the opposite sides of the YSZ substrates using platinum ink
• Electrochemical impedance spectroscopy (EIS) was used to evaluate the electrode materials’ area specific resistance 

(ASR) at temperatures of 800, 850, 900, and 1000°C  

Results and Conclusions

• Our results have shown that LSC and LSF-ns have lower 
ASR’s than commercially available LSM-based materials at 
temperatures between 800°C and 900°C.  

• EIS results are shown in the form of a Nyquist plot—real  
impedance, Z’, versus imaginary impedance, Z”. 

• ASR is calculated using the following equation:
ASR = Z’max - Z’min
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Sample Geometry for Impedance Spectroscopy:

Porous Cathode, Ni-YSZ cermet

Gas-tight Electrolyte, YSZ

Porous Anode, La0.8Sr0.2MnO3
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Solid Oxide Electrolyzer Cell Operation:
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Q=TΔS (Heat Demand)

ΔG (Electrical Energy Demand)

ΔH (Total Energy Demand)
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Nyquist Plots for La0.8Sr0.2CoO3
Arrhenius Plot for All Electrode 

Compositions

Area Specific Resistance (Ω-cm2)

0.0820.370.891.4LaNiO3

0.0540.190.380.81La0.7Sr0.2FeO3

nd0.581.22.2La0.8Sr0.2FeO3

0.0800.270.671.3La0.8Sr0.2CoO3

0.653.7nd8.4La0.8Sr0.2MnO3

1000ºC900ºC850ºC800ºC

Electrode 
Composition

nd = not determined
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